Package: MatrixMixtures 1.0.0

MatrixMixtures: Model-Based Clustering via Matrix-Variate Mixture Models

Implements finite mixtures of matrix-variate contaminated normal distributions via expectation conditional-maximization algorithm for model-based clustering, as described in Tomarchio et al.(2020) <arxiv:2005.03861>. One key advantage of this model is the ability to automatically detect potential outlying matrices by computing their a posteriori probability of being typical or atypical points. Finite mixtures of matrix-variate t and matrix-variate normal distributions are also implemented by using expectation-maximization algorithms.

Authors:Salvatore D. Tomarchio [aut], Michael P.B. Gallaugher [aut, cre], Antonio Punzo [aut], Paul D. McNicholas [aut]

MatrixMixtures_1.0.0.tar.gz
MatrixMixtures_1.0.0.zip(r-4.5)MatrixMixtures_1.0.0.zip(r-4.4)MatrixMixtures_1.0.0.zip(r-4.3)
MatrixMixtures_1.0.0.tgz(r-4.4-any)MatrixMixtures_1.0.0.tgz(r-4.3-any)
MatrixMixtures_1.0.0.tar.gz(r-4.5-noble)MatrixMixtures_1.0.0.tar.gz(r-4.4-noble)
MatrixMixtures_1.0.0.tgz(r-4.4-emscripten)MatrixMixtures_1.0.0.tgz(r-4.3-emscripten)
MatrixMixtures.pdf |MatrixMixtures.html
MatrixMixtures/json (API)

# Install 'MatrixMixtures' in R:
install.packages('MatrixMixtures', repos = c('https://gallaump.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • SimX - Simulated Data

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 186 downloads 1 exports 6 dependencies

Last updated 3 years agofrom:ba09840cd7. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 14 2024
R-4.5-winOKNov 14 2024
R-4.5-linuxOKNov 14 2024
R-4.4-winOKNov 14 2024
R-4.4-macOKNov 14 2024
R-4.3-winOKNov 14 2024
R-4.3-macOKNov 14 2024

Exports:MatrixMixt

Dependencies:codetoolsdoSNOWforeachiteratorssnowwithr